

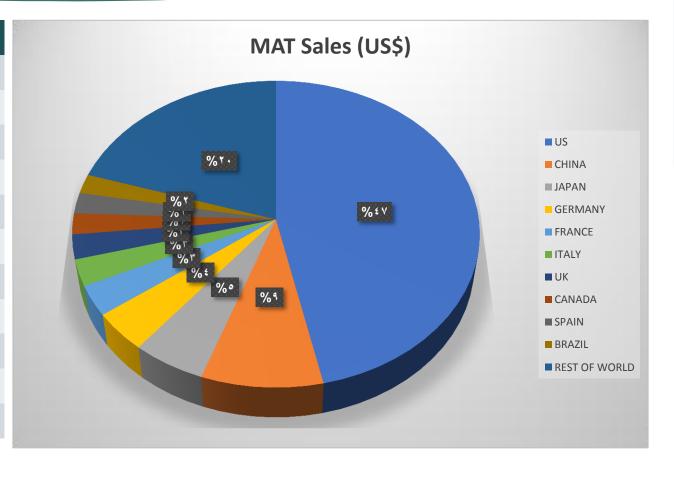
INSTRUCTOR

Dr. Mohamed Rohayem

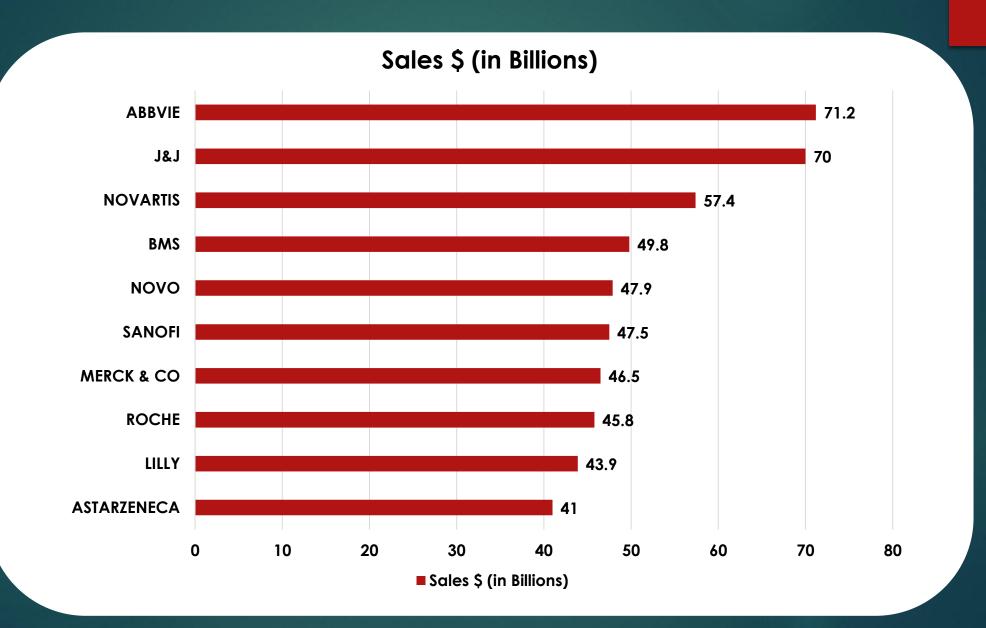
GCC Regional Brand Manager

Global Pharmaceutical Market Trends

MOHAMED ROHAYEM

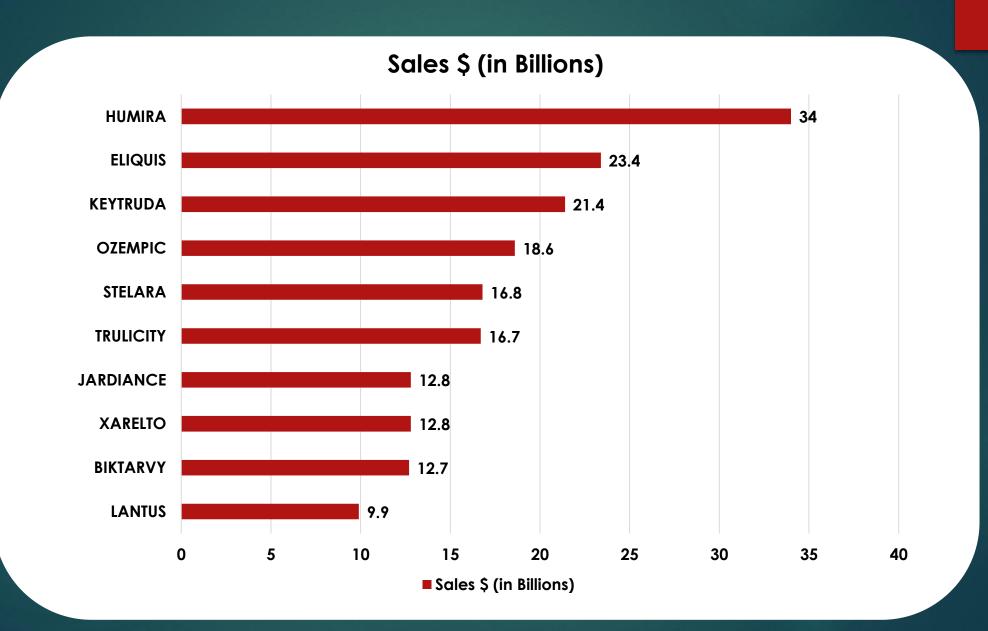

Mohamed Rohayem

- ▶GCC Brand Manager, Biotechnology Unite, Hikma Pharmaceutical.
- ▶Pharmacist.
- Around 20 years of sales & marketing experience.
- ▶Based in Riyadh, KSA.
- ▶ Married & have 3 kids.



Top 10 Countries: MAT Q3/2022

_				
	Country	MAT Sales (US\$)	Share	Growth
1	US	\$615,430,342,675	47%	9%
2	CHINA	\$116,966,626,584	9%	-1%
3	JAPAN	\$70,662,983,346	5%	-11%
4	GERMANY	\$54,513,294,049	4%	-2%
5	FRANCE	\$42,147,505,854	3%	1%
6	ITALY	\$36,510,082,902	3%	0%
7	UK	\$34,066,537,036	3%	0%
8	CANADA	\$29,226,922,797	2%	9%
9	SPAIN	\$28,945,544,633	2%	-1%
10	BRAZIL	\$26,869,792,711	2%	21%
11	REST OF WORLD	\$265,868,192,578	20%	4%


Top 10 Corporations: MAT Q3/2022

Top 10 International-Products: MAT Q3/2022

Top 10 International-Products: MAT Q3/2022

Product	Company	Indications
HUMIRA	AbbVie	RA , JIA , PSA , Axial-SPA , AS , PS, pPS , CD , pCD , UC , pUC , HS & UVT
ELIQUIS	BMS/Pfizer	Anticoagulant
KEYTRUDA	MSD	Melanoma, Non-Small Cell Lung Cancer, Head and Neck Squamous Cell Cancer,
OZEMPIC	Novo Nordisk	(GLP-1) receptor agonist indicated as an adjunct to diet and exercise to improve glycaemic control in adults with type 2 diabetes mellitus.
STELARA	Janssen	PSA, CD,UC & PS
TRULICITY	Eli Lilly	(GLP-1) receptor agonist indicated as an adjunct to diet and exercise to improve glycaemic control in adults with type 2 diabetes mellitus.
XARELTO	Janssen	Anticoagulant
JARDIANCE	Boehringer Ingelheim	An adjunct to diet and exercise to improve glycaemic control in adults with type 2 diabetes mellitus.
BIKTARVY	Gilead	Indicated as a complete regimen for the treatment of HIV-1 infection in adults and paediatric patients
LANTUS	SANOFI	patients with type 1 diabetes mellitus and in adults with type 2 diabetes mellitus

<u>Trends Driving the Pharma Industry</u>

Biosimilars

Patient Centricity & Engagement

Real World Evidence

Diagnostics

Digital & Al

<u>Trends Driving the Pharma Industry</u>

Biosimilars

Patient Centricity & Engagement

Real World Evidence

Diagnostics

Cell & Gene Therapy

Digital & Al

Biosimilarity: Regulatory Definitions

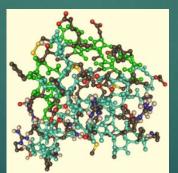
The American Food & Drug Administration (FDA): A biosimilar is a biological product that is highly similar
to and has no clinically meaningful differences from an existing FDA-approved reference product.(1)

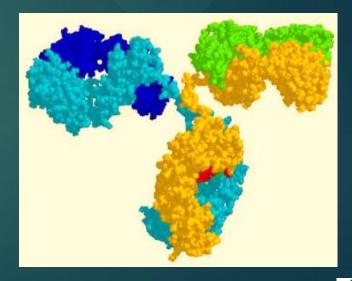
• European Medicines Agency (EMA): A biosimilar medicine ('biosimilar') is a medicine highly similar to another biological medicine already marketed in the EU 'reference medicine'. Due to the natural variability of the biological source, strict controls are always in place during manufacturing to ensure that minor differences do not affect the way the medicine works or its safety. (2)

How Biologics Are Different In Comparison To Chemical Medicines?

Biosimilars

In comparison to small chemical molecules, biologics are large, and they are often 200 – 1000 times larger than the chemical molecules. Moreover, biologics are significantly more complex with 3D protein structured.(1)


Aspirin
(Acetylsalicylic acid)
180 Daltons


=

Insulin 5,700 Daltons

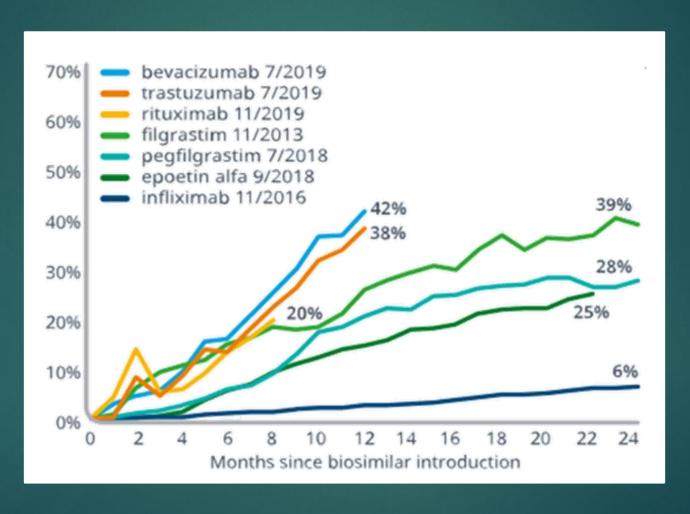
mAb 150,000 Daltons

Why 'Biosimilars' Are Not 'Generic Drugs'?

Biosimilars differ from generics in complexity, manufacturing processes, and in the data needed to demonstrate similarity for approval 1, 2-3

Bio	sın	nili	ar

Properties	Generics	Biosimilars
Size	Small	Large
Molecular Weight	~150 Daltons	~150,000 Daltons
Structure	Simple and well-defined	Complex with potential structural variations
Manufacturing	Predictable chemical process to make identical copy	Specialized biological process to make similar copy
Complexity	Easy to fully characterize	Difficult to characterize
Stability	Relatively stable	Sensitive to storage and handling conditions
Adverse Immune Reaction	Lower potential	Higher potential
Manufacturing Quality Tests	≤ 50	≥ 250
Approval Requirements	Small clinical trials in healthy volunteers	Large clinical trials in patients



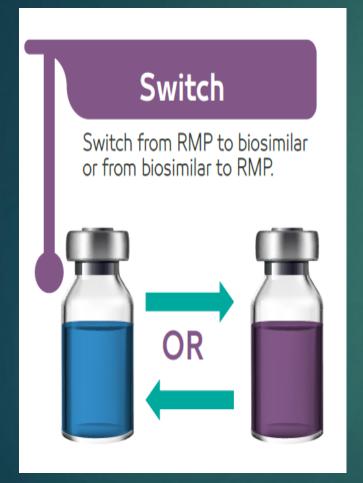
Recently Launched Biosimilars Have Significantly Higher & Faster Market Share than Prior Biosimilars

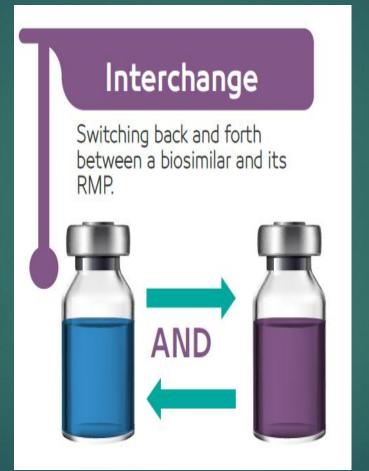
Biosimilars

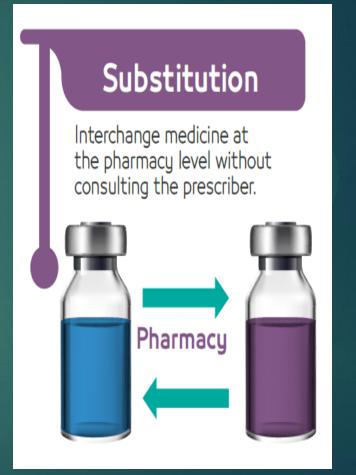
Biosimilars Main Players:

Biosimilars

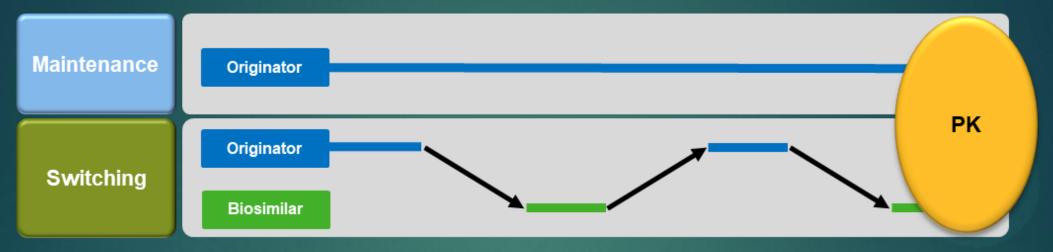
Top Biosimilar Companies With Approved & Pipeline Products In The US & EU






Definitions of Switch, Interchange and Substitution:

Biosimilars



Interchangeability (US FDA Guideline):

Biosimilars

Switch study design

Clinical Data Needed

Study Endpoints	Study Design	Study Population	Extrapolation	Route of Administration
PKPDImmunogenicitySafety	 Sample size based on PK At least 2 doses both for reference and test drugs 	Adequately sensitive population	Support extrapolation of data to other conditions of use	Assessment of clinical changes in safety risk & efficacy

Interchangeability (EMA):

Biosimilars

19 September 2022 EMA/627319/2022

Statement on the scientific rationale supporting interchangeability of biosimilar medicines in the EU

HMA and EMA consider that once a biosimilar is approved in the EU it is interchangeable, which means the biosimilar can be used instead of its reference product (or vice versa) or one biosimilar can be replaced with another biosimilar of the same reference product.

Trends Driving the Pharma Industry

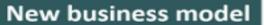
Patient Centricity & Engagement

Real World Evidence

Diagnostics

Digital & A

Old vs New Pharma Business Models



Old business model

Pill/vial

Health outcome

Physicians

Customer

Patients, providers, payers

Chemical, biological

R&D tools

Chemical, biological, digital

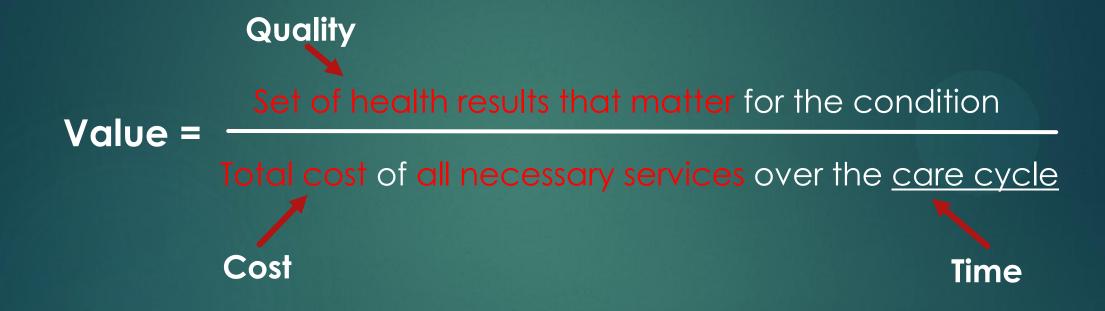
Pharma and biotech

Competitors

Pharma, biotech, technology players (including consumer-focused online businesses, digital health and digital therapeutics firms)

Value-based Care & Access - What is it?

Value-based care is a function of access, outcomes and costs. To achieve higher value, we must deliver the best possible population and patient outcomes in the most efficient way


Patient engagement is also seen as a central tenet of valuebased care. To the degree that providers and insurers can get people activated and engaged in their own care, using enabling technologies and robust data likely offers better potential to achieve improved health outcomes at a lower cost.¹

What is Value in Healthcare?

Trends Driving the Pharma Industry

Cell & Gene Therapy

Patient Centricity & Engagement

Biosimilars

Real World

Diagnostics

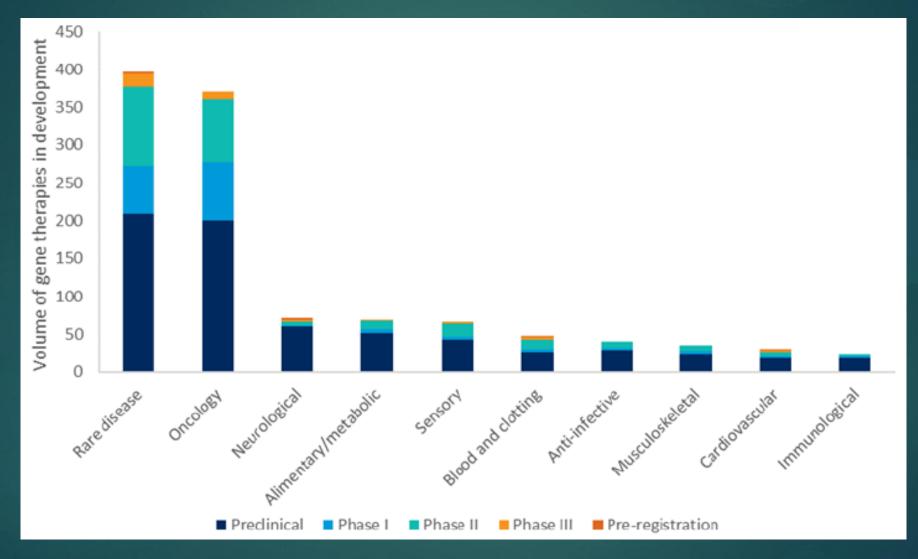
Digital & A

Gene therapy: EMA & FDA Definitions

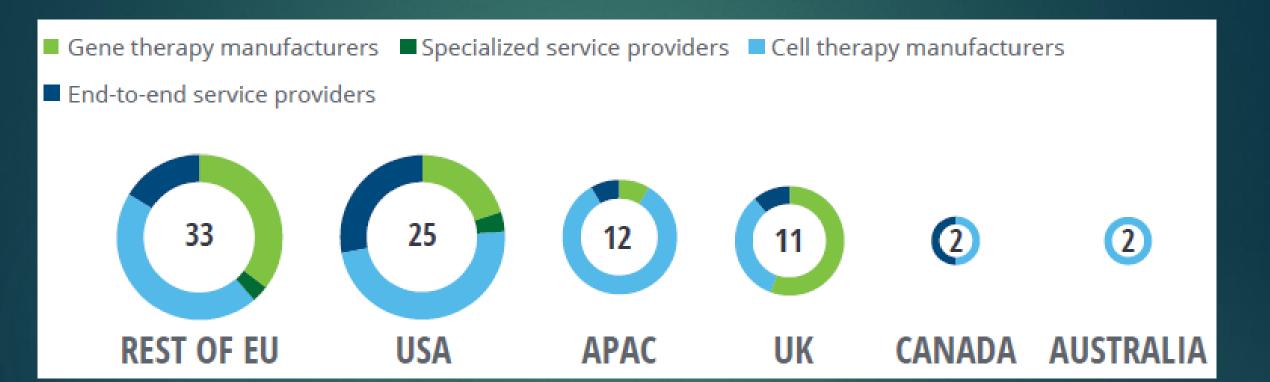
EMA definition

 Contains or consists of recombinant nucleic acid, inserted into the body, to regulate, repair, replace, add, or delete a genetic sequence

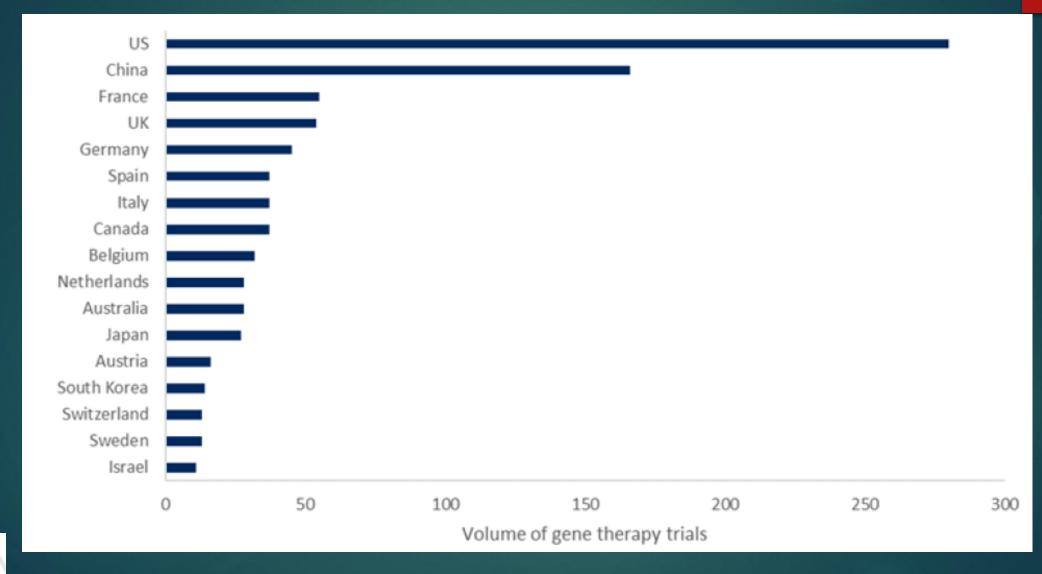
FDA definition


 Genetic material administered to modify or manipulate gene expression, or to alter the biological properties of living cells for therapeutic use

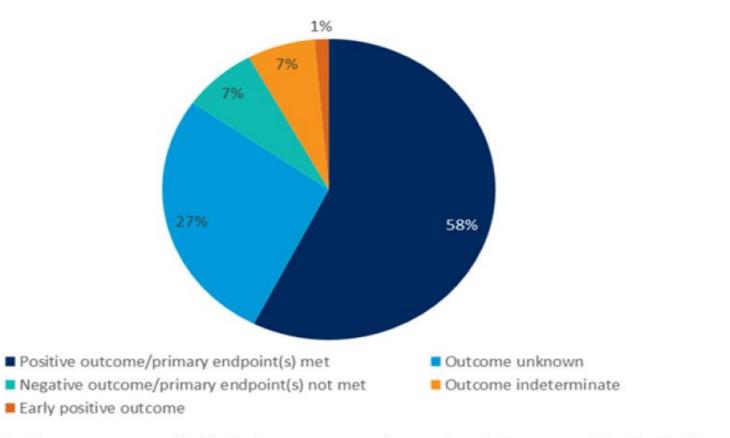
Gene Therapy Pipeline, by Therapy Area & Phase



50+ Companies Compete in the Cell and Gene Global Marketplace(1)



Most gene therapy clinical trial activity is in the US

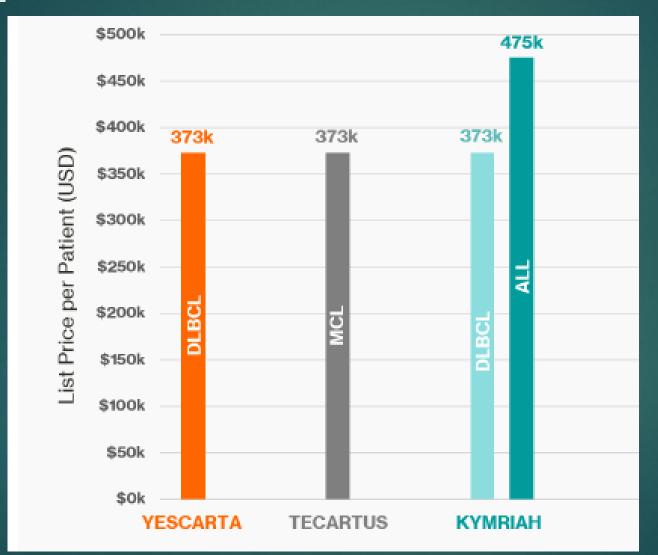


Completed Gene Therapy Trials are Largely Successful; Trials by Outcomes

Notes: The figure covers worldwide, industry-sponsored, completed Phase I–IV trials. The "unknown" category is for those trials where the primary endpoint results were not available, or only interim or pooled results have been reported. The "indeterminate" category is for those trials where the final results are available, but it is not readily apparent whether the results represent a positive or negative outcome.

CGT's Potential to Transform(1)

- Scientific development of CGT is booming and unlikely to slow down
 - Novartis opened the market in 2017 with Kymriah, followed a few months later by Gilead's Yescarta
 - ▶ The FDA predicts it will be approving 10 to 20 gene therapy products a year by 2025.
- Biggest hurdles to CGT commercialization
 - Manufacturing and logistics of getting treatment to the patients
 - ► These translate into untenable prices
- Payers are struggling to approve them because of their high treatment cost
 - ▶ \$400,000 \$1,000,000 per patient
 - Kymriah: \$475,000
 - ► Yescarta: \$373,000
 - ▶ Luxturna (per eye): \$425,000



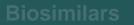
Payers Struggling to Approve High Price of CAR-T

<u>Therapies</u>(1)

ALL: Acute Lymphoblastic Leukaemia
DLBCL: Diffuse Large B-Cell Lymphoma
MCL: Mantle Cell Lymphoma

Rregistered Gene Therapy in KSA:

Scientific Name	Trade Name	Strength	Doesage Form	Price	Details
TISAGENLECLEUCEL	Kymriah	6	Dispersion for infusion	1633500	Details
					<u>4 1/3 1</u>
Scientific Name	Trade Name	Strength	Doesage Form	Price	Details



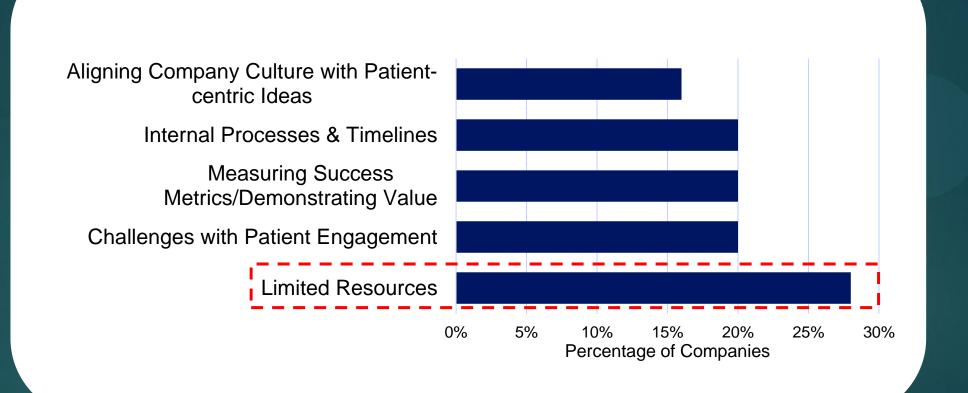
Trends Driving the Pharma Industry

Diagnostics

Digital & A

Patient Centricity & Engagement:

5 Important Elements



Obstacles To Achieving Patient-Centricity:

Attributes that Matter Most to Patients:

Respondents Rating Importance of Attribute at 8 or more (Out of 10) N = 3,230

Patients Seek Information from Digital Channels Nearly as Much as from Doctors:

Before Diagnosis	After Diagnosis	During Treatment
My doctor	My doctor	My doctor
53 %	58%	
Family, friends, colleagues	Family, friends, colleagues	Family, friends, colleagues
49%	48%	41%
Online search	Online search	Online search
46%	 	
Medical websites	Medical websites	Medical websites
	54%	
Social Media	Social Media	Social Media
	48%	

How to Build Strong Patient-Centric Communications:

- > Develop and own patient centric communication program.
- > Engage patient advocacy groups; SHCs.
- > Support patient education.
- > Structure formal channels of communication.
- > Monitor progress, evaluate and adjust.

It's trending – More focus is being placed on Smart Health Communities (SHCs) – groups of public, nonprofit, and commercial enterprises, as well as non-traditional players—who are focused on addressing disease prevention and well-being and work together on a sustained basis, all while operating largely outside of the traditional health care system.¹

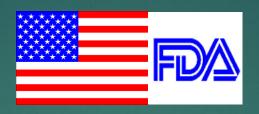
Trends Driving the Pharma Industry

Real World Evidence

Biosimilars

Patient Centricity & Engagement

Diagnostics


Digital & Al

USFDA Definition of RWE:

Researchers from the US Food and Drug Administration (FDA) define real-world evidence (RWE) as: "Healthcare information derived from multiple sources outside of typical clinical research settings, including electronic medical records (EMRs), claims and billing data, product and disease registries, and data gathered by personal devices and health applications." They acknowledge that these data sets can "effectively complement the knowledge gained from "traditional" clinical trials.

RWE Status and Challenges_{1,2}:

Current Status:

- Developed countries are making significant moves towards RWE.
- Developing countries are in the earliest stages of establishing RWE.

Challenges

- Limitation of EMR (Electronic Medical Record) data system and complexity.
- Lack of standards and data integration from different sources.
- Collaborating with numerous stakeholders holding the data.
- Complying with regulatory requirements.
- Achieving medical-level accuracy.
- Low level of cooperation by pharma.
- · Low awareness among HCPs.
- · Varied stakeholder needs.
- High costs.

Several Developed Countries Are Accumulating High-Value RWE Pools:

	Database ¹		Lives covered Millions	Industry access
Japan 🔴	MHLW	National claims database	126	Possible through academics, often requires significant data cleaning
us	CMS	Medicald/Medicare claims databases	120	Possible through academics, but with limitations
France	SNIIRAM	National claims database	60	None, limited to academics and health policy experts only
	PMSI	National hospital claims database	60	Through academics only, but future unclear due to privacy concerns
UK	CPRD	Electronic medical record (EMR) data from 10% GPs	53	Open, 80% of pharma companies purchase access to raw data
	HES	English hospital EMR database	15	None, raw data previously available before "care.data" concerns
	AOK, WIdO		24	
Germany	Barmer GEK	Regional public sickness funds claims data	9	Possible through academics but long wait times and reluctant to share with industry
	TK, Wineg		7	,
Denmark	sundhed.dk	National cross-linked healthcare databases	6	Possible through academics, but time consuming
100 m 100 m 100 m				

RWE Involvement Across the Product Life Cycle:

Typical RWE applications

Research

Development 🛗

Launch

In market

Support the understanding of diseases and unmet needs

Reduce clinicaldevelopment cycle time and costs

Support pricing and demonstrate value

Improve commercial spending and effectiveness

Support pharmacovigilance and label extension

Trends Driving the Pharma Industry

Diagnostics

Cell & Gene Therapy

Biosimilars

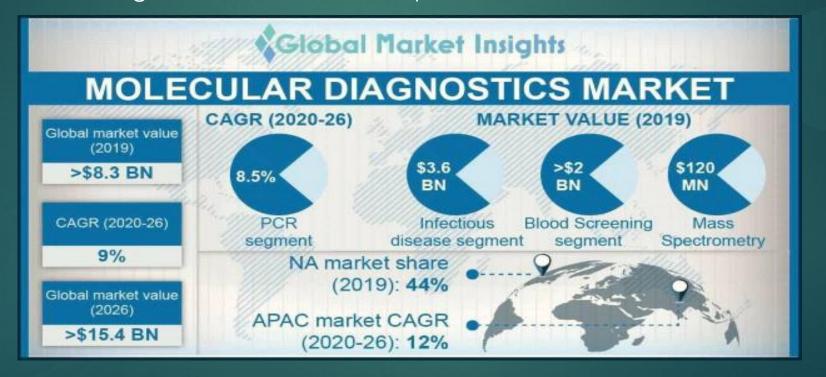
Patient Centricity & Engagement

Real World Evidence

Digital & Al

Top Diagnostics Segments and Trends:

- Main segments: MDx, CDx, POC
 - Molecular diagnostics (MDx) drive precision medicine (\$9.2 Bil 2019)
 - Companion diagnostics (CDx) move beyond oncology (\$3.7 Bil 2020)
 - Point of care diagnostics (POC) will rise faster due to COVID inflection point (\$24.8 Bil 2021)
- Immunoassays will remain predominant in healthcare.


Molecular Diagnostics (MDx):

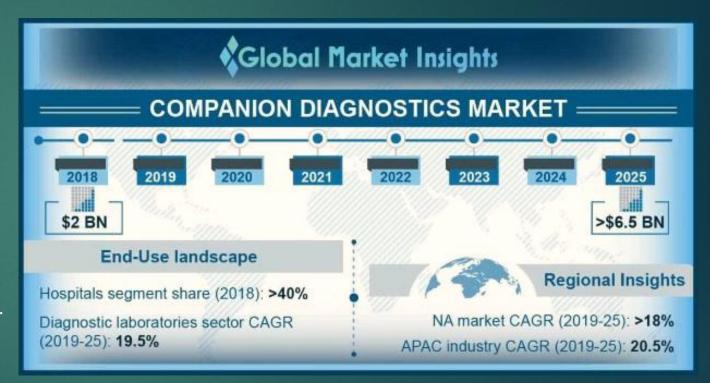
Diagnostics

Molecular diagnostics is a rapidly evolving field in healthcare that uses nucleic acid-based tests to detect and characterize the genetic content of diseases. It helps in the early diagnosis of disease and can guide personalized treatment decisions.

The global molecular diagnostics market size is expected to reach USD 50.94 Billion in 2030.

phigh cost of molecular diagnostics tests is a major factor restraining the growth of the market.

Companion Diagnostics (CDx):



Diagnostics

A companion diagnostic is a medical device, often an in vitro device, which provides information that is essential for the safe and effective use of a corresponding drug or biological product.(1)

Companion diagnostics can (1):

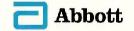
- Identify patients who are most likely to benefit from a particular therapeutic product;
- 2. Identify patients likely to be at increased risk for serious side effects as a result of treatment with a particular therapeutic product; or
- Monitor response to treatment with a particular therapeutic product for the purpose of adjusting treatment to achieve improved safety or effectiveness.

The prominent companies thriving in the companion diagnostics market are Sysmex Corporation, Almac Group, Arup Laboratories, Biocartis, Abbott Laboratories, bioMerieux, GE Healthcare, Genomic Health, Danaher Corporation, Illumina Inc, Myriad Genetics, Qiagen, Roche Diagnostics, Thermo Scientific, and Agilent.(2)

Point of Care Diagnostics (POC):

Diagnostics

Point-of-care testing, often abbreviated to POC testing, is medical testing done at or near the point of care. In this context, POC refers to the location of the patient.(1)



KEY COMPANIES PROFILED

COVID-19 Impact on Diagnostics:

Diagnostics

448

COVID-19-related diagnostics launched in market or in development

232

Focused on viral in-vitro diagnostics

219

FDA-cleared COVID-19 Tests

148
Antibody invitro

diagnostics

Trends Driving the Pharma Industry

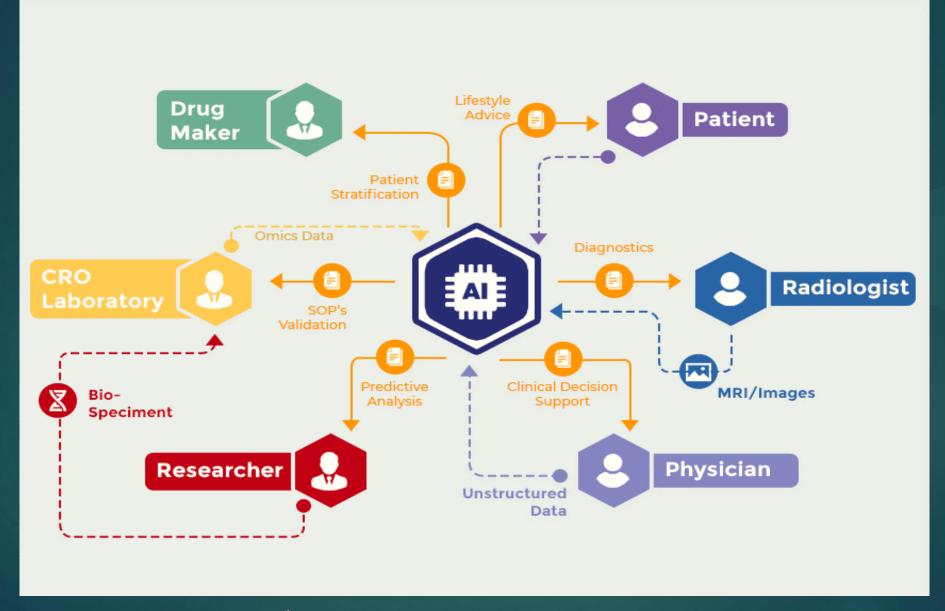
Digital & Al

Biosimilars

Cell & Gene Therapy

Patient Centricity & Engagement

Real World


Diagnostics

Digital and AI in Pharma and Healthcare:

Digital Around the World:

JAN 2022

ESSENTIAL DIGITAL HEADLINES

OVERVIEW OF THE ADOPTION AND USE OF CONNECTED DEVICES AND SERVICES

TOTAL POPULATION

UNIQUE MOBILE PHONE USERS

INTERNET USERS

ACTIVE SOCIAL MEDIA USERS

7.91 BILLION

URBANISATION

57.0%

5.31 BILLION

vs. POPULATION

67.1%

4.95BILLION

vs. POPULATION

62.5%

4.62 BILLION

vs. POPULATION

58.4%

SOURCES: UNITED NATIONS; U.S. CENSUS BUREAU; GOVERNMENT BODIES; GSMA INTELLIGENCE; ITU; GWI; EUROSTAT; CNINIC; APJII; CIA WORLD FACTBOOK; COMPANY ADVERTISING RESOURCES AND EARNINGS REPORTS. OCDH; TECHRASA; KEPIOS ANALYSIS. **ADVISORY:** SOCIAL MEDIA USERS MAY NOT REPRESENT UNIQUE INDIVIDUALS. **COMPARABILITY:** SOURCE AND BASE CHANGES.

Digital Growth:

JAN 2022

DIGITAL GROWTH

CHANGE IN THE USE OF CONNECTED DEVICES AND SERVICES OVER TIME

TOTAL POPULATION

UNIQUE MOBILE PHONE USERS

INTERNET

USERS

ACTIVE SOCIAL

MEDIA USERS

+1.0%

YEAR-ON-YEAR CHANGE +80 MILLION

+1.8%

YEAR-ON-YEAR CHANGE +95 MILLION

+4.0%

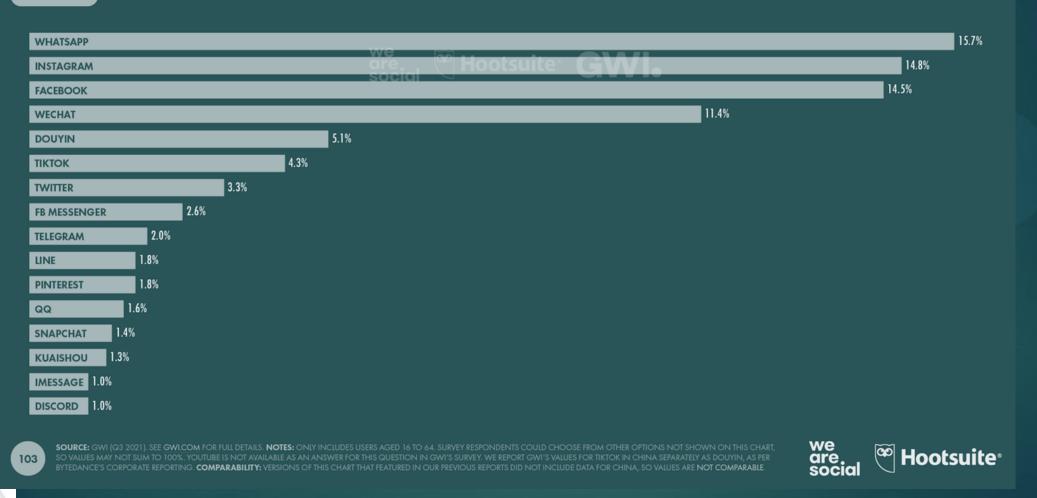
YEAR-ON-YEAR CHANGE +192 MILLION +10.1%

YEAR-ON-YEAR CHANGE

+424 MILLION

SOURCES: UNITED NATIONS; U.S. CENSUS BUREAU; GOVERNMENT BODIES; GSMA INTELLIGENCE; ITU; GWI; EUROSTAT; CNINIC; APJII; CIA WORLD FACTBOOK; COMPANY ADVERTISING RESOURCES AND EARNINGS REPORTS; OCDH; TECHRASA; KEPIOS ANALYSIS. ADVISORY: DUE TO COVID-19-RELATED DELAYS IN RESEARCH AND REPORTING, FIGURES FOR INTERNET USER GROWTH MAY UNDER-REPRESENT ACTUAL TRENDS. SEE NOTES ON DATA FOR MORE DETAILS. SOCIAL MEDIA USERS MAY NOT REPRESENT UNIQUE INDIVIDUALS. COMPARABILITY: SOURCE AND BASE CHANGES.

Social Media Platforms:



JAN 2022

FAVOURITE SOCIAL MEDIA PLATFORMS

PERCENTAGE OF INTERNET USERS AGED 16 TO 64 WHO SAY THAT EACH OPTION IS THEIR "FAVOURITE" SOCIAL MEDIA PLATFORM

Where is Al Right Now?

Digital & Al

111

2 out of 3 "

consumers are already using AI without even knowing they are interacting with chatbots.

Al will grow into a

\$190B

industry by 2025.

of companies will be using artificial intelligence for driving digital revenue.

By the year 2020,

97%

of mobile users are already using Al-powered voice assistants.

71%

B2B marketers are interested in using AI for personalization.

Al in Pharma Industry_{1,2}

- Application of AI with machine learning can make healthcare processes
 - Seamless
 - Cost-effective
 - Efficient
 - Hassle-free
- And become a driving force behind many communication services
 - Basic communication
 - Product recommendations
 - Content creation
 - Email personalization
 - E-commerce transactions

Important Links:

- https://www.gabionline.net/
- https://www.centerforbiosimilars.com/
- https://pharmaintelligence.informa.com/searchlisting?searchtext=biosimilars

Thank You

